

1 Apache2::SubProcess -- Executing SubProcesses
under mod_perl

115 Feb 2014

1 Apache2::SubProcess -- Executing SubProcesses under mod_perlApache2::SubProcess -- Executing SubProcesses under mod_perl

1.1 Synopsis
 use Apache2::SubProcess ();

 use Config;
 use constant PERLIO_IS_ENABLED => $Config{useperlio};

 # pass @ARGV / read from the process
 $command = "/tmp/argv.pl";
 @argv = qw(foo bar);
 $out_fh = $r->spawn_proc_prog($command, \@argv);
 $output = read_data($out_fh);

 # pass environment / read from the process
 $command = "/tmp/env.pl";
 $r->subprocess_env->set(foo => "bar");
 $out_fh = $r->spawn_proc_prog($command);
 $output = read_data($out_fh);

 # write to/read from the process
 $command = "/tmp/in_out_err.pl";
 ($in_fh, $out_fh, $err_fh) = $r->spawn_proc_prog($command);
 print $in_fh "hello\n";
 $output = read_data($out_fh);
 $error = read_data($err_fh);

 # helper function to work w/ and w/o perlio-enabled Perl
 sub read_data {
 my ($fh) = @_;
 my $data;
 if (PERLIO_IS_ENABLED || IO::Select->new($fh)->can_read(10)) {
 $data = <$fh>;
 }
 return defined $data ? $data : ’’;
 }

 # pass @ARGV but don’t ask for any communication channels
 $command = "/tmp/argv.pl";
 @argv = qw(foo bar);
 $r->spawn_proc_prog($command, \@argv);

1.2 Description
Apache2::SubProcess provides the Perl API for running and communicating with processes
spawned from mod_perl handlers.

At the moment it’s possible to spawn only external program in a new process. It’s possible to provide
other interfaces, e.g. executing a sub-routine reference (via B::Deparse) and may be spawn a new
program in a thread (since the APR api includes API for spawning threads, e.g. that’s how it’s running
mod_cgi on win32).

15 Feb 20142

1.1 Synopsis

1.3 API

1.3.1 spawn_proc_prog

Spawn a sub-process and return STD communication pipes:

 $r->spawn_proc_prog($command);
 $r->spawn_proc_prog($command, \@argv);
 $out_fh = $r->spawn_proc_prog($command);
 $out_fh = $r->spawn_proc_prog($command, \@argv);
 ($in_fh, $out_fh, $err_fh) = $r->spawn_proc_prog($command);
 ($in_fh, $out_fh, $err_fh) = $r->spawn_proc_prog($command, \@argv);

obj: $r (Apache2::RequestRec object)
arg1: $command (string)

The command to be $exec()’ed.

opt arg2: \@argv (ARRAY ref)

A reference to an array of arguments to be passed to the process as the process’ ARGV.

ret: ...

In VOID context returns no filehandles (all std streams to the spawned process are closed).

In SCALAR context returns the output filehandle of the spawned process (the in and err std streams
to the spawned process are closed).

In LIST context returns the input, outpur and error filehandles of the spawned process.

since: 2.0.00

It’s possible to pass environment variables as well, by calling:

 $r->subprocess_env->set($key => $value);

before spawning the subprocess.

There is an issue with reading from the read filehandle ($in_fh)):

A pipe filehandle returned under perlio-disabled Perl needs to call select() if the other end is not fast
enough to send the data, since the read is non-blocking.

A pipe filehandle returned under perlio-enabled Perl on the other hand does the select() internally, because
it’s really a filehandle opened via :APR layer, which internally uses APR to communicate with the pipe.
The way APR is implemented Perl’s select() cannot be used with it (mainly because select() wants fileno()
and APR is a crossplatform implementation which hides the internal datastructure).

315 Feb 2014

1.3 APIApache2::SubProcess -- Executing SubProcesses under mod_perl

Therefore to write a portable code, you want to use select for perlio-disabled Perl and do nothing for
perlio-enabled Perl, hence you can use something similar to the read_data() wrapper shown in the
Synopsis section.

Several examples appear in the Synopsis section.

spawn_proc_prog() is similar to fork(), but provides you a better framework to communicate with
that process and handles the cleanups for you. But that means that just like fork() it gives you a differ-
ent process, so you don’t use the current Perl interpreter in that new process. If you try to use that method
or fork to run a high-performance parallel processing you should look elsewhere. You could try Perl
threads, but they are very expensive to start if you have a lot of things loaded into memory (since
perl_clone() dups almost everything in the perl land, but the opcode tree). In the mod_perl
"paradigm" this is much more expensive than fork, since normally most of the time we have lots of perl
things loaded into memory. Most likely the best solution here is to offload the job to PPerl or some other
daemon, with the only added complexity of communication.

To spawn a completely independent process, which will be able to run after Apache has been shutdown
and which won’t prevent Apache from restarting (releasing the ports Apache is listening to) call
spawn_proc_prog() in a void context and make the script detach and close/reopen its communication
streams. For example, spawn a process as:

 use Apache2::SubProcess ();
 $r->spawn_proc_prog (’/path/to/detach_script.pl’, $args);

and the /path/to/detach_script.pl contents are:

 # file:detach_script.pl
 #!/usr/bin/perl -w
 use strict;
 use warnings;

 use POSIX ’setsid’;

 chdir ’/’ or die "Can’t chdir to /: $!";
 open STDIN, ’/dev/null’ or die "Can’t read /dev/null: $!";
 open STDOUT, ’+>>’, ’/path/to/apache/error_log’
 or die "Can’t write to /dev/null: $!";
 open STDERR, ’>&STDOUT’ or die "Can’t dup stdout: $!";
 setsid or die "Can’t start a new session: $!";

 # run your code here or call exec to another program

reopening (or closing) the STD streams and called setsid() makes sure that the process is now fully
detached from Apache and has a life of its own. chdir() ensures that no partition is tied, in case you
need to remount it.

15 Feb 20144

1.3.1 spawn_proc_prog

1.4 See Also
mod_perl 2.0 documentation.

1.5 Copyright
mod_perl 2.0 and its core modules are copyrighted under The Apache Software License, Version 2.0.

1.6 Authors
The mod_perl development team and numerous contributors.

515 Feb 2014

1.4 See AlsoApache2::SubProcess -- Executing SubProcesses under mod_perl

Table of Contents:
....... 11 Apache2::SubProcess -- Executing SubProcesses under mod_perl
................... 21.1 Synopsis
................... 21.2 Description
.................... 31.3 API
............... 31.3.1 spawn_proc_prog
................... 51.4 See Also
................... 51.5 Copyright
................... 51.6 Authors

i15 Feb 2014

Table of Contents:Apache2::SubProcess -- Executing SubProcesses under mod_perl

	1€€Apache2::SubProcess -- Executing SubProcesses under mod_perl
	1.1€€Synopsis
	1.2€€Description
	1.3€€API
	1.3.1€€spawn_proc_prog

	1.4€€See Also
	1.5€€Copyright
	1.6€€Authors

